
PATCHCRAFT - Plugin

MANUAL - PATCHCRAFT

For SAP Commerce

1

PATCHCRAFT - Plugin

TABLE OF CONTENTS

1.0 ABOUT PATCHCRAFT ………………………………………………………………………………………………. 3
2.0 TECHNICAL OVERVIEW ……………………….……………………………………………………………….…. 4
3.0 TECHNOLOGIES AND TOOLS …………………………………………………………………………………. 5
4.0 DATA MODEL ……………………………………………………………………………………………………..………. 6
5.0 PLUGIN REQUIREMENTS SCOPE …………………………………………………………………………… 7

5.1 AUTOMATED PICKING OF IMPEX FILES …………………………………..……………… 7
5.2 NO CODE CHANGES AND SPRING BEAN CONFIGURATIONS

FOR EACH PATCHES ………………………………………………………………………….…….…… 7
5.3 AFTER EXECUTION PATCH AND ENTRIES WILL BE MARKED

IN THE DATABASE ……………………………………………………………………………..…….…… 7
5.4 DESIGNED AS A TEMPLATE EXTENSION ……………………………………..…………. 8
5.5 CREATED A BACKOFFICE VIEW FOR PATCHCRAFT ………………..…...………. 8
5.6 RUN SYNCJOB AND SOLRINDEXER DURING

PATCH EXECUTION ……………………………………………………………………………………….. 8
6.0 INSTALLATION ………………………………………………………………………………………………………..….. 9
7.0 WORKING WITH PATCHCRAFT ……………………………………….…………………………………….. 10

7.1 FOLDER STRUCTURE ………………………………………………………….…………..………….. 11
7.2 IMPEX FILE ……………………………………………………………………………………………..…..… 12

7.2.1 RERUNNING OF FAILED IMPEX FILES ……………………..……….……… 12
7.3 PROPERTY FILE ……………………………………………………………………..…….…………….... 13
7.4 BACKOFFICE VIEW …………………………………………...……………………..……….…………. 14

INDEX OF FIGURES

Figure 1 : Output of ant extgen ………..………………………………..…………………………………………... 9
Figure 2 : Folder Structure …………………………………………………………………………………………….... 11
Figure 3 : PatchCraft Backoffice Tree node ………………………………………………………….……... 14
Figure 4 : PatchCraft listview ………………………………………………………………………………………..… 14
Figure 5 : Editor Area of Patch……………………………………………………………………….…..…………... 15
Figure 6 : Editor Area of Entry ……………………………………………..……………………………..……….…. 15

2

PATCHCRAFT - Plugin

1.0 ABOUT PATCHCRAFT

Currently patches concept is complicated, such as for a patch we need to create the
folder structure, impex, header file, class file, bean changes etc. It carries a lot of
manual effort, and is time consuming as well. Our idea is to simplify the patching idea.

In PatchCraft, the user just needs to paste the impex files in the releases folder(with
respect to their release and patch) within the resources/patchcraft and perform an
Update. Both ant updatesystem or Update via HAC is sufficient.

PatchCraft helps to run patches in the most user-friendly way. It has a backoffice view
as well. Users can find PatchCraft in the backoffice tree node. Going through the
backoffice view, the user gets a complete idea about what all are the available patches,
their statuses, path, and what are impex files under each patch, their statuses and the
error message etc.

3

PATCHCRAFT - Plugin

2.0 TECHNICAL OVERVIEW

This extension is built on top of SAP Commerce Cloud version 2211. Thus, make sure
you have the project running with version 2211.

4

PATCHCRAFT - Plugin

3.0 TECHNOLOGIES AND TOOLS

The following table summarises the proposed platform and software recommended
for the system hosting.

Sl No: Component Description

1 Operating Platform Windows 11

2 Web Server Tomcat

3 Technology SAP Commerce

4 Development Environment IntelliJ IDE

5 Source Control Git

5

PATCHCRAFT - Plugin

4.0 DATA MODEL

PATCHCRAFT

Attribute Type

code String

entries List (PatchCraftEntry)

status Enum

path String

PATCHCRAFTENTRY

Attribute Type

file String

status Enum

error String

6

PATCHCRAFT - Plugin

5.0 PLUGIN REQUIREMENTS SCOPE

The following functionalities are covered as part of the “PatchCraft Plugin” :

5.1 AUTOMATED PICKING OF IMPEX FILES

● Removed the complexities in the folder structure and its naming criteria.
● Users can paste their patches within

resources/<extensionname>/releases directory with respect to their
release and patch id. For more details refer Folder Structure.

● During update, the impex files will be automatically picked up from this
location.

● Impex files stored within the subfolders inside any patch will also be
picked.

5.2 NO CODE CHANGES AND SPRING BEAN CONFIGURATIONS FOR EACH
PATCHES

● No need to make code changes for new patches or impex files, users
just need to save the impex files according to the folder structure. No
other changes need to be done.

● No spring bean configurations are required for new patches.

5.3 AFTER EXECUTION PATCH AND ENTRIES WILL BE MARKED IN THE
DATABASE

● After execution all the initiated patches and impex files are updated in
the database.

● Information like code, status, path, error message (if any) of all the
patches and entries are stored within the database.

7

PATCHCRAFT - Plugin
● If any impex gets FAILED then the corresponding patch is also marked

as FAILED.

● If any impex or patch gets failed it will not affect the execution of the
other patches.

● All the detected error cases are handled.

5.4 DESIGNED AS A TEMPLATE EXTENSION

● PatchCraft is designed as a template extension, so the users can create
their new custom extensions with PatchCraft using the simple ant extgen
command.

5.5 CREATED A BACKOFFICE VIEW FOR PATCHCRAFT

● Created PatchCraft tree node and can be accessed by an admin user via
backoffice.

● Designed the listview and editor areas for displaying and accessing
PatchCraft and PatchCraftEntry details.

5.6 RUN SYNCJOB AND SOLRINDEXER DURING PATCH EXECUTION

● Users can create a property file in patch, in which they can mention keys
‘runSyncJob’ & ‘runSolrIndex’.

● Within the keys, users can add which all are the SyncJobs and
SolrIndexers(in comma separated manner) which they need to perform
during patch execution.

8

PATCHCRAFT - Plugin

6.0 INSTALLATION

● Include patchcraft & patchcraftbackoffice extensions within the project suite.
● Navigate to the platform folder and open a Terminal there.
● PatchCraft is designed as a template, so users can simply create their custom

extensions from PatchCraft by simply using ant extgen command.

> ant extgen

● We can see an output like this:

Figure 1 : Output of ant extgen

● Select patchcraft from the list.
● In the next prompt provide your custom patchcraft extension name.
● Provide the package in the next prompt.
● Custom extension is created.
● Add the new custom extension and patchcraftbackoffice within the

localextensions.xml file.

<extension name='yourcustomextension'/>
<extension name='patchcraftbackoffice' />

● Build the application and perform server startup.

9

PATCHCRAFT - Plugin

7.0 WORKING WITH PATCHCRAFT

● Save the impex and property files within the extension according to the folder
structure.

● Add your core and all other required extensions in the extensioninfo.xml file.

Example:

<requires-extension name="extensionname"/>

● Perform ant updatesystem.
● During update, the impex files will be automatically picked up and will be

initiated to import.
● In case of ant initialize, make sure that you have added the core and all other

required extensions in the extensioninfo.xml file.
● Also all the mentioned syncJobs and solrIndex will get initiated.
● Login to backoffice as admin and navigate into the PatchCraft tree node for a

detailed view of the executed patches.
● Refer below for more details.

10

PATCHCRAFT - Plugin

7.1 FOLDER STRUCTURE

Figure 2 : Folder Structure

● PatchCraft has a very simple folder structure.
● Within the resources/<extensionname>, we can see a releases folder.
● Users can paste their patches within this directory with respect to their release

and patch id.
● Patch folder consists of all the impexes of that particular patch and if any ticket

consists of multiple impexes, then the user can create a subfolder for that ticket
and store the impexes there.

● Within the patch folder, users can create a property file in which they can set
the runSolrIndex & runSyncJob keys.

11

PATCHCRAFT - Plugin

7.2 ImpEx Files

● Users can save the Impex files within the patch folder and if any ticket consists
of multiple impex files, then the user can create a subfolder for that ticket and
store it there.

● Users must be cautious when naming the impex files, as no impex files of the
same patch must have the same name.

● Users can name the impex files with the ticket id, language, country, purpose of
the impex etc.

● If any impex fails during import, the entry and the corresponding patch will be
marked as FAILED.

● Once executed patches will be skipped till there are no new impex files in that
patch.

● If a user adds a new impex file in an already executed patch, then the already
imported files will be skipped and the new one will be imported.

‘
7.2.1 Rerunning of Failed Impex Files

● Once FAILED, the entry can be removed manually from the backoffice.
● After correcting the Impex error, User can do an update again.
● Now the PatchCraft & entry will be updated with a SUCCESS status.

12

PATCHCRAFT - Plugin

7.3 Property File

● Users can create a property file within the patch folder.
● Within the property file user can define two keys:

Key Value

runSyncJob SyncJob code in comma separated
manner

runSolrIndex SolrFacetSearchConfig name in comma
separated manner

Example:

runSyncJob=job1,job2,job3
runSolrIndex=index1,index2,index3

● For one patch one property file is only required, that means no need to create
the file for each ticket.

● If no job needs to run on that sprint, then no need for a property file for that
patch. That means it’s not at all a mandatory one.

● If more than one property file is present in a patch folder, the first one will only
be considered.

● Other than these two keys, no other keys can be used.

13

PATCHCRAFT - Plugin

7.4 BACKOFFICE VIEW

● Login to backoffice as admin, navigate to the PatchCraft tree node in the
Administration cockpit.

Figure 3: PatchCraft Backoffice Tree node.

● Click on the PatchCraft and the listview is displayed with code, status, created
time, executed time and the path.

Figure 4 : PatchCraft listview

14

PATCHCRAFT - Plugin
● Once any patch is selected, the editor area of that particular patch is displayed,

where the user can see code, entries, status and the path within the Common
tab.

Figure 5 : Editor area of Patch

● Once any entries are double clicked, the editor area of the entries are displayed,
where the user can see the file name, status and the error in the Common tab.

Figure 6 : Editor area of Entry

15

